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Abstract

We propose a method to allocate decision responsibility and arrange information flow dynamically
within a team of decision-makers for command and control.  A model of decision making which
relates the decision load to decision accuracy is proposed and employed as an atomic building
block to create predictive models of team decision making.  An optimization problem is then
proposed for a given set of forecast decision requirements in which the information flow between
the atomic decision-making models is varied so as to maximize an aggregate measure of decision
accuracy.   A small-scale MATLAB Simulink implementation is presented as well as the outline of
current work in which a genetic algorithm is employed to perform the optimization. Preliminary
results indicate the technique improves the decision-making performance measure.  We conclude
with a discussion of implementation issues in a larger C2 context.

1.  Introduction

We consider a scenario in which a distributed decision-making team such as a society of human
warriors, robots and computer systems is engaged in execution of a common mission.   The
decision-makers communicate with one another and adapt to changing circumstances, threats,
opportunities and information requirements while attempting to achieve a common objective.
They may also continually re-allocate decision-making tasks within the team and re-allocate
information flow between decision-makers. This view differs from a more conventional, fixed
hierarchical decision-making, or hierarchical control, and aims to account for the dynamic, fluid
nature of decision responsibilities and interactions.

In the traditional theory and practice of distributed and hierarchical control systems, a supervising
controller issues commands to lower level controllers.  These commands become inputs or set
points for the control processes of the lower-level controllers.  The responsibilities and types of
interactions between lower level controllers are static.  They are fixed when the system is
designed and remain constant while the system operates.  When this constant definition of
responsibilities and interactions becomes inadequate to adapt to the changing circumstances, as
will be the case in an uncertain environment with adversarial threats and changing information
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requirements, the control system is unable to perform effectively.  Additionally, in the context of a
team of decision-makers that is composed of humans as well as automated control processes, it is
typically a human commander who controls the allocation of decision-making and information-
sharing responsibilities as well as the modes of such sharing. The structure of the team is also
often fixed in a hierarchical format.  A human commander typically adjusts decision-making and
information-sharing responsibilities based on informal techniques, intuition, and best guesses
based on prior experience and training [Van Creveld, 1985], [Serfaty, 1998] [Entin,1999],
[Carley, 1998].  However, this control can break down when the complexity and speed of changes
in the situation exceeds the cognitive and reasoning capabilities of the human controller. This
problem is exacerbated in those teams that include software agents and robots as decision-makers
because these artificial decision-makers can observe, execute their decision-making algorithms,
and act much faster than a human controller, leading to a cascade of failures and poor team
performance [Morgan, 1995].

The above are among the examples of pathologies that can be exhibited by C2 systems.  A catalog
of such pathologies appeared in [Kott, 1999].  These range from clear and observable problems
such as loss of synchronization or thrashing to more subtle problems in C2 processes such as
hierarchical inconsistencies or positive feedback.  An example of unstable behavior in a C2 system
due to the positive feedback involving information overload was explored in [Kott, 2001].  The
main feature of the pathology studied in [Kott, 2001] is that the C2 system, either internally or in
interaction with the battlespace, enters into a self-reinforcing cycle of increasing decision
workload until the demand for decision-making exceeds the capacity of the C2 system. The work
also showed that by dynamically reallocating decision load between the decision-makers it is
possible to expand significantly the envelope of stable operation. The same notion of a reduction
in performance due to information overload is at play in the present work, though here we are
looking at optimizing performance based on future decision requirements rather than developing a
qualitative characterization of the operational envelope within which the decision process is
stable.

Herein, we explore a computer-assisted approach for managing decision-making, information-
sharing responsibilities, and modes of interactions between the team members that allows the team
to effectively and rapidly adapt to changing circumstances, threats and opportunities.

2.  Predictive Control of Distributed Decision-Making

The proposed predictive control scheme is illustrated in Figure 1 and involves four main aspects
that are described in the following sections.  In the setting of predictive control often employed,
even if only implicitly, in planning and execution of military operations and industrial engineering
applications, an internal model is used to determine, either analytically or through simulation or
wargaming, an input that can then be applied to the real system.  Here we consider the input to be
the structure of the decision-making team, i.e. the decision responsibilities and information
channels.  The actual decision and control values are assumed to be internal to the physical
battlespace as shown in Figure 1, i.e. we have abstracted away the epistemological content of the
decisions themselves in order to capture quantitatively the decision load and information channel



loads.  Similarly, as illustrated in Figure 1, the forecast decision requirements are abstracted to a
set of time-varying parameters that are used as an open-loop input for the simulation of the
decision-making process.  The standard model-predictive control process is then enacted;
different information structures are simulated with the given forecast decision requirements and a
best structure is chosen and used for the real decision making team in the physical battlespace.
This process of simulating a variety of information structures is captured by the internal
optimization loop of Figure 1.

2.1  An example: Three member team fighting a fire in a chemical plant.

For illustrative purposes, we consider a simple example of a team of three decision-makers – a
foreman, a scout and a robot – involved in a mission whose objective is to extinguish a fire in a
large chemical plant.  We assume that an initial ad-hoc plan calls for the foreman to observe the
fire from an observation post, the scout to identify a target location for dropping fire
extinguishing material and then join the foreman, and the robot to drop the fire extinguishing
material at the identified target location. An example of possible decisions and observations
required are as follows:

U1 – When and where to call a vehicle for the foreman escape.
U2 – When and on which target to drop fire extinguishing material.
U3 – Which flight path to take to reach the target.
U4 – When to egress and which egress route to choose for the scout.

We will re-visit this example as notions are developed.  The questions we wish to address in the
context of this example are

Physical Battlespace

(1) Predictive Model of
team decision-making

(2) Fitness
Function

(3) Optimization
of Information

Structure

(4) Forecast decision
requirements

Optimization
loop

Predictive Controller for
Distributed Team
Decision-Making

Figure 1.  The proposed predictive control scheme for dynamic allocation of
decision responsibilities and information sharing.



• Which, of the three team-members, should be responsible for deciding U1 through U4?
• How should the current decision outcomes be disseminated to other members in the team

(noting, of course, the key fact that too much information has negative consequences when an
urgent decision is needed)?

• If we can predict the difficulty and urgency of decisions U1 through U4, how should we
manage dynamically the answers to the first two questions?

Note that the decision-makers in this example are one and the same as the actors, but this is for
convenience only.  There may be entities in the decision-making teams that are physically removed
from the plant itself (an experienced foreman at another plant, for instance).  Also note that we
are not considering the control of the observation process1, again for convenience.

3. Modeling Team Decision-Making: Decision Responsibility and Information Structure

At this investigative stage of the research, we employ a straightforward model to capture the
traditional relationship between the task characteristics of complexity, urgency and decision load
and the resulting accuracy of the decision [Luce, 1986], [Louvet, 1988], [Busemeyer, 1993],
[Zsambok, 1997].  A set of parameterized curves in which accuracy is inversely proportional to
the time pressure is used for this purpose.   An example of this relationship is shown in Figure 2.
The additional parameters of normalized discriminability and the number of the options provide an
upper and lower bound on the accuracy as illustrated.    In future work, we plan to investigate
how the relationship between accuracy and decision requirements could be learnt or modeled
analytically at a higher fidelity and study the relative impact of imperfect modeling of these
relationships on the predictive power of the team decision-making model.

In a real implementation of the scheme, characteristics of the decision-making entities could be
used to quickly generate models from a pre-determined virtual decision-maker coefficient
database.  Such characteristics might include rank and experience level for a human decision
maker or processor capability, function and speed for an artificial decision-maker. As we are
presently interested in the analysis of trends and the effectiveness of the approach, a relatively
simple model suffices.

The relationship in Figure 2 is used to build dynamic input/output models for single decision-
makers.  Currently, a discrete-time approach is used; the accuracy, at a particular time instant, of
outgoing decisions for which that decision-maker is responsible is a function of the decision
requirements at the previous time instant.  The normalized discriminability and number of options
are exogenous inputs to the decision-making team and we assume these are properties of the
decisions themselves rather than the interaction processes in the team decision-making.  Further,
we assume the time-pressure has two sources.  First, there is an exogenous component that must
be predicted, but additionally there is time-pressure that results from the necessity of interactions
with other team members.  Clearly, if another team-member is urgently soliciting information on a

                                               
1 In a patent application on the same topic [Kott, 2002], it is proposed that observation channels be controlled in much the same
way as decisions.  In this example, this could mean appending the observations ‘Z1- Location of the fire’ and ‘Z2 – Types of
target locations’ for instance to the list of decisions.



different topic, this reduces the amount of time that can be spent on the decision at hand and so
increases the time pressure.

Figure 2.  An example of the decision-accuracy relationship for one decision-maker.

The input/output model for a single decision-maker is used as an atomic block from which is
constructed the team decision-making model.  The connections between the atomic blocks are
determined by what we will term the information structure.  This term is not uncommon in the
literature on decentralized and distributed control in more general settings [Witsenhausen, 1971],
[Teneketzis, 1997], [Ho, 1980].  We borrow the term here to refer specifically to the combination
of three objects: an observation structure, which maps the incoming data streams to the decision-
making entities, or agents, a decision-responsibility structure which partitions the outgoing
decision variables amongst the agents and a decision-sharing structure which defines the
information paths between agents.

A possible information structure for the fire-fighting example discussed above is partially
illustrated in Figure 3.  The decisions that each member is responsible for are indicated on the
figure and this illustrates the decision responsibility structure.  The decision-sharing structure is
illustrated with connecting arcs.   The labels on these arcs show the decision that is being
communicated and the mode in which it is communicated.   Here, we consider only two modes: a
pull mode in which the first decision-maker communicates information only if the second requests
the communication, and a push mode, in which the first decision-maker immediately
communicates any new information.  Though there is certainly a spectrum of possible interactions
of this sort, we have identified these two modes for a preliminary analysis.  The observation
structure is again left out for convenience (see the previous footnote).   Note, from a semantic
point of view, there is a minimal necessary information transfer for the decisions to be made.   For
instance, decision U3 (the route taken to the target location) necessitates knowledge of decision
U2 (selection of the location and timing for the target).  Accordingly, we define a decision
dependency criterion that underlies the dynamics of the model.  Information structures that do not



meet this minimal criteria will perform poorly because, for example, decisions concerning U3
made in the absence of knowledge of U2 are given arbitrarily an accuracy of zero per cent (we
assume informally that two wrongs do not make a right).  The decision dependencies for this
example are that U1 requires knowledge of U2 and U3, U2 requires U1, U3 requires U1 and U2
and U4 requires U1 and U2.   We assume that the minimal criterion can be met with either the
pull or push mode communication.

4.  Fitness Function

A quantitative measure of decision-making performance (e.g. overall accuracy or timeliness of
decisions) is required as a measuring stick for the suitability of a given information structure.
Clearly, the true intrinsic value of a given information structure is its effectiveness in the
battlespace or for the task at hand, but unfortunately without a high-fidelity battlespace simulation
this intrinsic value is not available in a simulation of the decision-making team.  While a number of
surrogate measures can be envisioned, we explore a particular one - a weighted average of the
accuracies of all decisions being made by the team, integrated over the time horizon, that serves as
an approximate indication of performance.   A potential implementation would couple decision-
making models with a battlespace simulation so that the predicted overall effectiveness could in
fact be used as a fitness function.

As indicated in Figure 1, the value of the fitness function is used to fine-tune the information
structure.  Smoothness or monotonicity of the fitness function with respect to changes in
information structure will not generally hold.  More importantly, changes in the information
structure are discrete yielding a discrete (in state) optimization problem and highlighting the fact
that traditional continuous-state feedback control techniques are not directly applicable.

Foreman

Scout
Robot

responsibility: U1

responsibility: 
U2,U4 responsibility: U3

U1/pull
U2/push

U3/pull

U1/pull

U2/push

Figure 3. The decision-makers in the fire-fighting example communicate with one another and take
responsibility for specific tasks as described by an information structure.



5. Optimization of Information Structure and the Optimization Loop

Repeated simulation for different alternative information structures is performed to maximize the
fitness function.  This in effect requires a global search of the space of information structures.
The optimization problem can be stated formally in a form similar to the observation problem
suggested in [Ho,1980] and there, as here, it bears no analytic solution.    In practice, the
optimization of responsibility/information structure cannot be de-coupled from the optimization of
the physical actions, such as the execution of a military operation. While traditional operations
planning tools do not explicitly consider the information structure as a quantity to be controlled, a
two-step process could be employed to optimize physical operations serially, either before or
after, the optimization of information structure.

6. Forecast Decision Requirements

In our current prototype implementation described below, the forecast decision characteristics
consist of a normalized discriminability, the number of options and a time pressure that
characterize each decision.  These are predicted for a rolling time horizon (for the next 6 hours,
for instance) and these predictions are then used as open-loop inputs to the dynamic model of
decision-making.  The feedback that would lead to changing predictions due to battlespace events
that are a result of the change in information structure is not considered in the current work. The
determination of which decision characteristics are of most importance for predicting decision
performance is also beyond the scope of the current work though of and great interest and vital
importance for the success of the proposed approach.

Figure 4. Future decision characteristics are predicted from information sources and used to fine tune the
information structure.



In practice, the raw information from which these parameters could be predicted will come
directly from the observations of the battlespace and other information and intelligence sources.

An example of predicted decision requirements for the fire-fighting example are shown in Figure 4
for a time horizon of 6 hours.  For the purposes of our example, these were generated manually
on the basis of the notional progression of the fire and the related actions of the fire-fighting team.
For instance, the decision characteristics of U1 (corresponding to the escape vehicle decisions for
the foreman) are such that there is little time pressure and many options at time 0, but as the fire
progresses the time pressure increases (reflected by a decrease in the graph) and the number of
options decreases steadily.  This might be the case if escape vehicle options become scarcer as the
fire approaches locations close to the foreman.

7. A Prototype Implementation

Figure 5 shows a Matlab Simulink [MathWorks, 2002] prototype implementation of the model in
which atomic blocks for the individual decision-makers in the fire-fighting example are combined
with the information structure in Figure 3.

Figure 5. The proposed scheme for predictive control implemented
in MATLAB Simulink for a small-scale example.



We are currently investigating an optimization scheme based on a genetic algorithm although a
number of discrete optimization techniques could be potentially applicable.   The information
structure is encoded as a chromosome without content loss, and the fitness of each chromosome
is evaluated with a direct simulation of our team-decision making MATLAB Simulink model.
The Genetic Algorithm Optimization Toolbox [GAOT Toolbox, 2002] offers a large variety of
mutation operators, crossover operators and selection criteria and is well suited for this
application.

Preliminary results for this optimization appear promising for the small-scale exploratory scenario
with convergence to a (locally) optimal information structure with greatly improved fitness in
realistic computational cost (less than one minute on a Pentium 4 Processor).   A small variety of
meaningful, common-sense, information structures were produced (see Figure 6 for examples),
depending on how the forecast predictions were varied, indicating a match at least with intuitive
notions of how teams should communicate and share tasks.

.

8. Conclusions

We argue that dynamic modification of the decision responsibilities and information-sharing links
within a decision-making team can improve stability and performance in terms of quality of
decisions produced by the team.   We have proposed a model-predictive scheme to control the
modifications during operations based on (continually updated) forecast decision complexities and
urgencies. The scheme involves modeling individual decision-makers and combining them to
produce a predictive model of the team information exchange and decision-making.  Figure 7
shows an informal landscape of the applicability of this form of dynamically managed team
decision-making.  Intuitively, as the tempo of operations increases and the accuracy of predictions
in the battlespace decrease, it is expected that dynamic management of the information structure
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Figure 6. Examples of locally optimal information structures
for given sets of predicted decision characteristics.



will improve performance.  In particular, the proposed approach would be suitable to teams
composed entirely or partially of unmanned or semi-autonomous vehicles.

We have implemented and experimented with small-scale prototypes of team decision-making
models.  Though these have provided favorable results, the prototypes were implemented without
regards to the impact of issues such as modeling uncertainty, inaccuracies in predicted decision
requirements and possible counter-intuitive dynamics evolving from human-computer interactions.
It is clear that these and other issues need to be addressed in future research.
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